Prognose og trend Når du legger til en trendlinje på et Excel-diagram, kan Excel vise ligningen i et diagram (se nedenfor). Du kan bruke denne ligningen til å beregne fremtidig salg. FORECAST og TREND-funksjonen gir nøyaktig samme resultat. Forklaring: Excel bruker metoden for minste firkanter for å finne en linje som passer best til punktene. R-kvadratverdien er 0,9295, som er en god passform. Jo nærmere 1, desto bedre passer linjen til dataene. 1. Bruk ligningen til å beregne fremtidig salg. 2. Bruk FORECAST-funksjonen til å beregne fremtidig salg. Merk: Når vi drar FORECAST-funksjonen ned, forblir de absolutte referansene (B2: B11 og A2: A11) det samme, mens den relative referansen (A12) endres til A13 og A14. 3. Hvis du foretrekker å bruke en matriseformel, bruk TREND-funksjonen til å beregne fremtidig salg. Merk: Først, velg området E12: E14. Deretter skriver du TREND (B2: B11, A2: A11, A12: A14). Fullfør ved å trykke CTRL SHIFT ENTER. Formellinjen indikerer at dette er en matriseformel ved å omslutte den i krøllete bånd. For å slette denne matriseformelen, velg området E12: E14 og trykk Delete. Gjennomsnittlig gjennomsnitt Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet for en tidsserie i Excel. Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter (topper og daler) for enkelt å gjenkjenne trender. 1. Først, ta en titt på vår tidsserie. 2. På Data-fanen klikker du Dataanalyse. Merk: kan ikke finne dataanalyseknappen Klikk her for å laste inn add-in for Analysis ToolPak. 3. Velg Flytt gjennomsnitt og klikk OK. 4. Klikk i feltet Inngangsområde og velg området B2: M2. 5. Klikk i intervallboksen og skriv inn 6. 6. Klikk i feltet Utmatingsområde og velg celle B3. 8. Skriv en graf av disse verdiene. Forklaring: fordi vi angir intervallet til 6, er glidende gjennomsnitt gjennomsnittet for de forrige 5 datapunktene og det nåværende datapunktet. Som et resultat blir tinder og daler utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for de første 5 datapunktene fordi det ikke er nok tidligere datapunkter. 9. Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon: Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, desto nærmere beveger gjennomsnittet seg til de faktiske datapunktene. Gjennomgang av gjennomsnittlig prognoseinnledning. Som du kanskje tror vi ser på noen av de mest primitive tilnærmingene til prognoser. Men forhåpentligvis er disse minst en verdig innføring i noen av databehandlingsproblemene knyttet til implementering av prognoser i regneark. I denne veinen vil vi fortsette med å starte i begynnelsen og begynne å jobbe med Moving Average prognoser. Flytte gjennomsnittlige prognoser. Alle er kjent med å flytte gjennomsnittlige prognoser, uansett om de tror de er. Alle studenter gjør dem hele tiden. Tenk på testresultatene dine i et kurs der du skal ha fire tester i løpet av semesteret. La oss anta at du fikk en 85 på din første test. Hva vil du forutsi for din andre testscore Hva tror du at læreren din ville forutsi for din neste testscore Hva tror du dine venner kan forutsi for din neste testscore Hva tror du at foreldrene dine kan forutsi for neste testresultat uansett om alt det du kan gjøre med dine venner og foreldre, de og din lærer er veldig sannsynlig å forvente deg å få noe i området av 85 du nettopp har fått. Vel, nå kan vi anta at til tross for selvforfremmelse til vennene dine, overestimerer du deg selv og figurerer du kan studere mindre for den andre testen, og så får du en 73. Nå er det alle de bekymrede og ubekymrede går til Forvent deg at du kommer på den tredje testen. Det er to svært sannsynlige tilnærminger for dem å utvikle et estimat, uansett om de vil dele det med deg. De kan si til seg selv, at denne fyren alltid blåser røyk om hans smarts. Hes kommer til å få en annen 73 hvis han er heldig. Kanskje foreldrene vil prøve å være mer støttende og si, quote, så langt har du fått en 85 og en 73, så kanskje du burde finne på å få en (85 73) 2 79. Jeg vet ikke, kanskje hvis du gjorde mindre fest og werent vevet vasselen over alt, og hvis du begynte å gjøre mye mer å studere, kan du få en høyere score. quot Begge disse estimatene flytter faktisk gjennomsnittlige prognoser. Den første bruker bare din siste poengsum for å prognose din fremtidige ytelse. Dette kalles en flytende gjennomsnittlig prognose ved hjelp av en periode med data. Den andre er også en flytende gjennomsnittlig prognose, men bruker to perioder med data. La oss anta at alle disse menneskene bråser på ditt store sinn, har slags pisset deg av og du bestemmer deg for å gjøre det bra på den tredje testen av dine egne grunner og for å sette en høyere poengsum foran din quotalliesquot. Du tar testen og poengsummen din er faktisk en 89 Alle, inkludert deg selv, er imponert. Så nå har du den endelige testen av semesteret som kommer opp, og som vanlig føler du behovet for å få alle til å gjøre sine spådommer om hvordan du skal gjøre på den siste testen. Vel, forhåpentligvis ser du mønsteret. Nå, forhåpentligvis kan du se mønsteret. Hvilke tror du er den mest nøyaktige fløyten mens vi jobber. Nå går vi tilbake til vårt nye rengjøringsfirma som startes av din fremmedgjorte halv søster, kalt Whistle While We Work. Du har noen tidligere salgsdata som er representert av følgende del fra et regneark. Vi presenterer først dataene for en tre-års glidende gjennomsnittlig prognose. Oppføringen for celle C6 skal være Nå kan du kopiere denne celleformelen ned til de andre cellene C7 til C11. Legg merke til hvordan gjennomsnittet beveger seg over de nyeste historiske dataene, men bruker nøyaktig de tre siste perioder som er tilgjengelige for hver prediksjon. Du bør også legge merke til at vi ikke virkelig trenger å gjøre spådommene for de siste perioder for å utvikle vår siste prediksjon. Dette er definitivt forskjellig fra eksponentiell utjevningsmodell. Ive inkluderte quotpast predictionsquot fordi vi vil bruke dem på neste nettside for å måle prediksjonens gyldighet. Nå vil jeg presentere de analoge resultatene for en to-års glidende gjennomsnittlig prognose. Oppføringen for celle C5 skal være Nå kan du kopiere denne celleformelen ned til de andre cellene C6 til C11. Legg merke til hvordan nå bare de to siste stykkene av historiske data blir brukt for hver prediksjon. Igjen har jeg tatt med quotpast predictionsquot for illustrative formål og for senere bruk i prognose validering. Noen andre ting som er viktig å legge merke til. For en m-periode som beveger gjennomsnittlig prognose, brukes bare de nyeste dataverdiene for å gjøre prognosen. Ingenting annet er nødvendig. For en m-periode som beveger gjennomsnittlig prognose, legger du merke til at den første prediksjonen forekommer i periode m 1. Begge disse problemene vil være svært viktige når vi utvikler koden vår. Utvikle den bevegelige gjennomsnittsfunksjonen. Nå må vi utvikle koden for den bevegelige gjennomsnittlige prognosen som kan brukes mer fleksibelt. Koden følger. Legg merke til at inngangene er for antall perioder du vil bruke i prognosen og rekke historiske verdier. Du kan lagre den i hvilken arbeidsbok du vil ha. Funksjon MovingAverage (Historical, NumberOfPeriods) Som Single Deklarering og Initialisering av variabler Dim Item Som Variant Dim Counter Som Integer Dim Akkumulering Som Single Dim HistoricalSize Som Integer Initialiserende variabler Teller 1 Akkumulering 0 Bestemme størrelsen på Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulere riktig antall siste tidligere observerte verdier Akkumulasjonsakkumulering Historisk (HistoricalSize - NumberOfPeriods Counter) MovingAverage AkkumuleringsnummerOfPeriods Koden vil bli forklart i klassen. Du vil plassere funksjonen på regnearket slik at resultatet av beregningen vises der det skal like det følgende.
No comments:
Post a Comment