Wednesday 1 November 2017

4 Punkts Moving Average Eksemplet


Flytende gjennomsnitt Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet av en tidsserie i Excel. Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter (topper og daler) for enkelt å gjenkjenne trender. 1. Først, ta en titt på vår tidsserie. 2. På Data-fanen klikker du Dataanalyse. Merk: kan ikke finne dataanalyseknappen Klikk her for å laste inn add-in for Analysis ToolPak. 3. Velg Flytt gjennomsnitt og klikk OK. 4. Klikk i feltet Inngangsområde og velg området B2: M2. 5. Klikk i intervallboksen og skriv inn 6. 6. Klikk i feltet Utmatingsområde og velg celle B3. 8. Skriv en graf av disse verdiene. Forklaring: fordi vi angir intervallet til 6, er glidende gjennomsnitt gjennomsnittet for de forrige 5 datapunktene og det nåværende datapunktet. Som et resultat blir tinder og daler utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for de første 5 datapunktene fordi det ikke er nok tidligere datapunkter. 9. Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon: Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, jo nærmere de bevegelige gjennomsnittene er de faktiske datapunktene. Gjennomsnittlig gjennomsnitt Hvis denne informasjonen er plottet på en graf, ser det slik ut: Dette viser at det er stor variasjon i antall besøkende, avhengig av sesong . Det er langt mindre i høst og vinter enn vår og sommer. Men hvis vi ønsket å se en trend i antall besøkende, kunne vi beregne et 4-punkts glidende gjennomsnitt. Vi gjør dette ved å finne gjennomsnittlig antall besøkende i fire kvartaler i 2005: Da finner vi gjennomsnittlig antall besøkende i de tre siste kvartaler i 2005 og første kvartal 2006: Så de siste to kvartaler i 2005 og de to første kvartaler av 2006: Merk at det siste gjennomsnittet vi finner er de siste to kvartaler i 2006 og de to første kvartalene av 2007. Vi skisserer de bevegelige gjennomsnittene på en graf, og sørger for at hvert gjennomsnitt er plottet i midten av de fire kvartaler det dekker: Vi kan nå se at det er en svært liten nedadgående trend i besøkende. Gjennomsnittlig gjennomsnitt: Hva er de Blant de mest populære tekniske indikatorene, er glidende gjennomsnitt brukt til å måle retningen for den nåværende trenden. Hver type bevegelige gjennomsnitt (vanligvis skrevet i denne opplæringen som MA) er et matematisk resultat som beregnes ved å beregne et antall tidligere datapunkter. Når det er bestemt, blir det resulterende gjennomsnittet plottet på et diagram for å tillate handelsmenn å se på glatt data, i stedet for å fokusere på de daglige prisfluktuasjonene som er iboende i alle finansmarkeder. Den enkleste formen for et bevegelige gjennomsnitt, riktig kjent som et enkelt glidende gjennomsnitt (SMA), beregnes ved å ta det aritmetiske gjennomsnittet av et gitt sett av verdier. For eksempel, for å beregne et grunnleggende 10-dagers glidende gjennomsnitt vil du legge til sluttkursene fra de siste 10 dagene, og deretter dele resultatet med 10. I figur 1 er summen av prisene for de siste 10 dagene (110) dividert med antall dager (10) for å komme fram til 10-dagers gjennomsnittet. Hvis en forhandler ønsker å se et 50-dagers gjennomsnitt i stedet, vil samme type beregning bli gjort, men det vil inkludere prisene i løpet av de siste 50 dagene. Det resulterende gjennomsnittet under (11) tar hensyn til de siste 10 datapunktene for å gi handelsmenn en ide om hvordan en eiendel er priset i forhold til de siste 10 dagene. Kanskje du lurer på hvorfor tekniske handelsfolk kaller dette verktøyet et bevegelige gjennomsnitt og ikke bare en vanlig gjennomsnitt. Svaret er at når nye verdier blir tilgjengelige, må de eldste datapunktene slippes fra settet og nye datapunkter må komme inn for å erstatte dem. Dermed går datasettet kontinuerlig til å regne for nye data etter hvert som det blir tilgjengelig. Denne beregningsmetoden sikrer at bare den nåværende informasjonen blir regnskapsført. I figur 2 flyttes den røde boksen (som representerer de siste 10 datapunktene) til høyre, og den siste verdien av 15 blir tapt fra beregningen når den nye verdien av 5 er lagt til settet. Fordi den relativt små verdien av 5 erstatter den høye verdien på 15, ville du forvente å se gjennomsnittet av datasettets reduksjon, som det gjør, i dette tilfellet fra 11 til 10. Hva ser Moving Averages Like Når verdiene til MA har blitt beregnet, de er plottet på et diagram og deretter koblet til for å skape en bevegelig gjennomsnittslinje. Disse svingete linjene er vanlige på diagrammer av tekniske handelsfolk, men hvordan de brukes kan variere drastisk (mer om dette senere). Som du kan se i figur 3, er det mulig å legge til mer enn ett glidende gjennomsnitt i et diagram ved å justere antall tidsperioder som brukes i beregningen. Disse svingete linjene kan virke distraherende eller forvirrende i begynnelsen, men du vil bli vant til dem når tiden går videre. Den røde linjen er bare gjennomsnittsprisen de siste 50 dagene, mens den blå linjen er gjennomsnittsprisen de siste 100 dagene. Nå som du forstår hva et glidende gjennomsnitt er, og hvordan det ser ut, kan du godt presentere en annen type glidende gjennomsnitt og undersøke hvordan det er forskjellig fra det tidligere nevnte enkle glidende gjennomsnittet. Det enkle glidende gjennomsnittet er ekstremt populært blant handelsfolk, men som alle tekniske indikatorer har det kritikere. Mange individer hevder at bruken av SMA er begrenset fordi hvert punkt i dataserien vektes det samme, uavhengig av hvor det forekommer i sekvensen. Kritikere hevder at de nyeste dataene er mer signifikante enn de eldre dataene, og bør ha større innflytelse på sluttresultatet. Som svar på denne kritikken begynte handelsmenn å gi mer vekt på nyere data, som siden har ført til oppfinnelsen av ulike typer nye gjennomsnitt, hvorav den mest populære er det eksponentielle glidende gjennomsnittet (EMA). (For videre lesing, se Grunnleggende om vektede bevegelige gjennomsnitt og hva som er forskjellen mellom en SMA og en EMA) Eksponentiell flytende gjennomsnitt Det eksponentielle glidende gjennomsnittet er en type bevegelige gjennomsnitt som gir mer vekt til de siste prisene i et forsøk på å gjøre det mer responsivt til ny informasjon. Å lære den noe kompliserte ligningen for å beregne en EMA kan være unødvendig for mange forhandlere, siden nesten alle kartleggingspakker gjør beregningene for deg. Men for deg matematiske geeks der ute, her er EMA-ligningen: Når du bruker formelen til å beregne det første punktet til EMA, kan det hende du merker at det ikke er noen verdi tilgjengelig for bruk som den forrige EMA. Dette lille problemet kan løses ved å starte beregningen med et enkelt glidende gjennomsnitt og fortsette videre med den ovennevnte formelen derfra. Vi har gitt deg et eksempelkart som inneholder virkelige eksempler på hvordan du kan beregne både et enkelt glidende gjennomsnitt og et eksponentielt glidende gjennomsnitt. Forskjellen mellom EMA og SMA Nå som du har en bedre forståelse av hvordan SMA og EMA beregnes, kan vi se på hvordan disse gjennomsnittene er forskjellige. Ved å se på beregningen av EMA, vil du legge merke til at det legges større vekt på de siste datapunktene, noe som gjør det til en type vektet gjennomsnitt. I figur 5 er antall tidsperioder som brukes i hvert gjennomsnitt identisk (15), men EMA reagerer raskere på de endrede prisene. Legg merke til hvordan EMA har en høyere verdi når prisen stiger, og faller raskere enn SMA når prisen senker. Denne responsen er den viktigste grunnen til at mange handelsmenn foretrekker å bruke EMA over SMA. Hva betyr de forskjellige dagene Gjennomsnittlig flytteverdi er en helt tilpassbar indikator, noe som betyr at brukeren fritt kan velge hvilken tidsramme de vil ha når man lager gjennomsnittet. De vanligste tidsperioder som brukes i bevegelige gjennomsnitt er 15, 20, 30, 50, 100 og 200 dager. Jo kortere tidsrammen som brukes til å skape gjennomsnittet, jo mer følsomt blir det for prisendringer. Jo lengre tidsrom, jo ​​mindre følsomt, eller mer utjevnet, vil gjennomsnittet være. Det er ingen riktig tidsramme som skal brukes når du oppretter dine bevegelige gjennomsnitt. Den beste måten å finne ut hvilken som passer best for deg, er å eksperimentere med en rekke forskjellige tidsperioder til du finner en som passer til din strategi. Flytte gjennomsnitt: Slik bruker du dem

No comments:

Post a Comment