Eksponentiell flytende gjennomsnitt - EMA BREAKING DOWN Eksponensiell flytende gjennomsnitt - EMA De 12 og 26-dagers EMAene er de mest populære kortsiktige gjennomsnittene, og de brukes til å skape indikatorer som den flytende gjennomsnittlige konvergensdivergensen (MACD) og prosentvis prisoscillator (PPO). Generelt brukes 50- og 200-dagers EMAer som signaler for langsiktige trender. Traders som ansetter teknisk analyse, finner glidende gjennomsnitt veldig nyttige og innsiktige når de brukes riktig, men skaper kaos når de brukes feil eller blir feilfortolket. Alle de bevegelige gjennomsnittene som vanligvis brukes i teknisk analyse, er av sin natur sakende indikatorer. Følgelig bør konklusjonene fra å bruke et glidende gjennomsnitt til et bestemt markedskart være å bekrefte et markedskryss eller for å indikere dets styrke. Svært ofte, etter hvert har en glidende gjennomsnittlig indikatorlinje endret seg for å reflektere et betydelig trekk i markedet, det optimale punktet for markedsinngang har allerede gått. En EMA tjener til å lette dette dilemmaet til en viss grad. Fordi EMA-beregningen plasserer mer vekt på de nyeste dataene, klemmer prishandlingen litt strammere og reagerer derfor raskere. Dette er ønskelig når en EMA brukes til å utlede et handelsinngangssignal. Tolke EMA Som alle bevegelige gjennomsnittsindikatorer, er de mye bedre egnet for trending markeder. Når markedet er i en sterk og vedvarende opptrinn. EMA-indikatorlinjen vil også vise en uptrend og vice versa for en nedtrend. En årvåken handelsmann vil ikke bare være oppmerksom på retningen til EMA-linjen, men også forholdet mellom endringshastigheten fra en linje til den neste. For eksempel, da prisvirkningen av en sterk opptrend begynner å flate og reversere, vil EMAs endringshastighet fra en linje til den neste begynne å redusere til den tid som indikatorlinjen flater og endringshastigheten er null. På grunn av den slanke effekten, ved dette punktet, eller til og med noen få barer før, bør prishandlingen allerede ha reversert. Det følger derfor at observere en konsistent reduksjon i endringshastigheten til EMA, kunne seg selv brukes som en indikator som ytterligere kunne motvirke dilemmaet forårsaket av den bølgende effekten av bevegelige gjennomsnitt. Vanlige bruksområder til EMA-EMAer brukes ofte i forbindelse med andre indikatorer for å bekrefte betydelige markedsbevegelser og å måle deres gyldighet. For handelsmenn som handler intradag og rasktflyttende markeder, er EMA mer anvendelig. Ofte bruker handelsmenn EMAer for å bestemme en handelspartiskhet. For eksempel, hvis en EMA på et daglig diagram viser en sterk oppadgående trend, kan en intradaghandlere strategi være å handle kun fra langsiden på en intradag-kart. Innføring i ARIMA: nonseasonal modeller ARIMA (p, d, q) prognoser likning : ARIMA-modeller er i teorien den mest generelle klassen av modeller for å prognose en tidsserie som kan gjøres til å være 8220stationary8221 ved differensiering (om nødvendig), kanskje i forbindelse med ikke-lineære transformasjoner som logging eller deflatering (om nødvendig). En tilfeldig variabel som er en tidsserie er stasjonær hvis dens statistiske egenskaper er konstante over tid. En stasjonær serie har ingen trend, dens variasjoner rundt sin gjennomsnitt har en konstant amplitude, og den svinger på en konsistent måte. det vil si at kortsiktige tilfeldige tidsmønstre alltid ser like ut i statistisk forstand. Den sistnevnte tilstanden betyr at dets autokorrelasjoner (korrelasjoner med sine egne tidligere avvik fra gjennomsnittet) forblir konstante over tid, eller tilsvarende, at dets effektspektrum forblir konstant over tid. En tilfeldig variabel i dette skjemaet kan ses som en kombinasjon av signal og støy, og signalet (hvis det er tydelig) kan være et mønster av rask eller langsom, gjennomsnittlig reversering eller sinusformet svingning eller rask veksling i tegn , og det kan også ha en sesongbestemt komponent. En ARIMA-modell kan ses som en 8220filter8221 som forsøker å skille signalet fra støyen, og signalet blir deretter ekstrapolert inn i fremtiden for å oppnå prognoser. ARIMA-prognose-ligningen for en stasjonær tidsserie er en lineær (dvs. regresjonstype) ekvation hvor prediktorene består av lag av de avhengige variable ogor lagene av prognosefeilene. Det er: Forutsigbar verdi for Y en konstant og en vektet sum av en eller flere nylige verdier av Y og eller en vektet sum av en eller flere nylige verdier av feilene. Hvis prediktorene kun består av forsinkede verdier av Y. Det er en ren autoregressiv (8220self-regressed8221) modell, som bare er et spesielt tilfelle av en regresjonsmodell, og som kunne være utstyrt med standard regresjonsprogramvare. For eksempel er en førsteordens autoregressiv (8220AR (1) 8221) modell for Y en enkel regresjonsmodell der den uavhengige variabelen bare er Y forsinket med en periode (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Hvis noen av prediktorene er lags av feilene, er en ARIMA-modell det IKKE en lineær regresjonsmodell, fordi det ikke er mulig å spesifisere 8220last period8217s error8221 som en uavhengig variabel: feilene må beregnes fra tid til annen når modellen er montert på dataene. Fra et teknisk synspunkt er problemet med å bruke forsinkede feil som prediktorer at modellen8217s spådommer ikke er lineære funksjoner av koeffisientene. selv om de er lineære funksjoner av tidligere data. Så koeffisienter i ARIMA-modeller som inkluderer forsinkede feil må estimeres ved ikke-lineære optimaliseringsmetoder (8220hill-klatring8221) i stedet for bare å løse et system av ligninger. Akronymet ARIMA står for Auto-Regressive Integrated Moving Average. Lags av den stasjonære serien i prognosekvotasjonen kalles kvotoregressivequot vilkår, lags av prognosefeilene kalles quotmoving averagequot vilkår, og en tidsserie som må differensieres for å bli stillestående, sies å være en quotintegratedquot-versjon av en stasjonær serie. Tilfeldige gange og tilfeldige trendmodeller, autoregressive modeller og eksponentielle utjevningsmodeller er alle spesielle tilfeller av ARIMA-modeller. En nonseasonal ARIMA-modell er klassifisert som en quotARIMA (p, d, q) kvotemodell hvor: p er antall autoregressive termer, d er antall ikke-sekundære forskjeller som trengs for stasjonar, og q er antall forsinkede prognosefeil i prediksjonsligningen. Forutsigelsesligningen er konstruert som følger. Først, la y angi den forskjellen på Y. Det betyr: Merk at den andre forskjellen på Y (d2-saken) ikke er forskjellen fra 2 perioder siden. Snarere er det den første forskjellen-av-første forskjellen. som er den diskrete analogen til et andre derivat, det vil si den lokale akselerasjonen av serien i stedet for sin lokale trend. Når det gjelder y. Den generelle prognosekvasjonen er: Her er de bevegelige gjennomsnittsparametrene (9528217s) definert slik at deres tegn er negative i ligningen, etter konvensjonen innført av Box og Jenkins. Noen forfattere og programvare (inkludert R programmeringsspråket) definerer dem slik at de har pluss tegn i stedet. Når faktiske tall er koblet til ligningen, er det ingen tvetydighet, men det er viktig å vite hvilken konvensjon programvaren bruker når du leser utgangen. Ofte er parametrene benevnt der av AR (1), AR (2), 8230 og MA (1), MA (2), 8230 etc. For å identifisere den aktuelle ARIMA modellen for Y. begynner du ved å bestemme differensordren (d) trenger å stasjonærisere serien og fjerne bruttoegenskapene til sesongmessighet, kanskje i forbindelse med en variansstabiliserende transformasjon som logging eller deflating. Hvis du stopper på dette punktet og forutser at den forskjellige serien er konstant, har du bare montert en tilfeldig tur eller tilfeldig trendmodell. Den stasjonære serien kan imidlertid fortsatt ha autokorrelerte feil, noe som tyder på at noen antall AR-termer (p 8805 1) og eller noen nummer MA-termer (q 8805 1) også er nødvendig i prognosekvasjonen. Prosessen med å bestemme verdiene p, d og q som er best for en gitt tidsserie, vil bli diskutert i senere avsnitt av notatene (hvis koblinger er øverst på denne siden), men en forhåndsvisning av noen av typene av nonseasonal ARIMA-modeller som ofte oppstår, er gitt nedenfor. ARIMA (1,0,0) førstegangs autoregressiv modell: Hvis serien er stasjonær og autokorrelert, kan den kanskje forutsies som et flertall av sin egen tidligere verdi, pluss en konstant. Forutsigelsesligningen i dette tilfellet er 8230 som er Y regressert i seg selv forsinket med en periode. Dette er en 8220ARIMA (1,0,0) constant8221 modell. Hvis gjennomsnittet av Y er null, vil ikke det konstante begrepet bli inkludert. Hvis hellingskoeffisienten 981 1 er positiv og mindre enn 1 i størrelsesorden (den må være mindre enn 1 i størrelsesorden dersom Y er stasjonær), beskriver modellen gjennomsnittsreferanseadferd hvor neste periode8217s verdi skal anslås å være 981 1 ganger som langt unna gjennomsnittet som denne perioden8217s verdi. Hvis 981 1 er negativ, forutser det middelreferanseadferd med skifting av tegn, dvs. det forutsier også at Y vil være under gjennomsnittlig neste periode hvis den er over gjennomsnittet denne perioden. I en andre-ordregivende autoregressiv modell (ARIMA (2,0,0)), ville det være et Y t-2 begrep til høyre også, og så videre. Avhengig av tegnene og størrelsene på koeffisientene, kunne en ARIMA (2,0,0) modell beskrive et system hvis gjennomsnitts reversering foregår i sinusformet oscillerende mote, som bevegelse av en masse på en fjær som er utsatt for tilfeldige støt . ARIMA (0,1,0) tilfeldig tur: Hvis serien Y ikke er stasjonær, er den enkleste modellen for den en tilfeldig turmodell, som kan betraktes som et begrensende tilfelle av en AR (1) modell der autoregressive koeffisienten er lik 1, det vil si en serie med uendelig sakte gjennomsnittlig reversering. Forutsigelsesligningen for denne modellen kan skrives som: hvor den konstante sikt er den gjennomsnittlige period-til-periode-endringen (dvs. den langsiktige driften) i Y. Denne modellen kan monteres som en ikke-avskjæringsregresjonsmodell der Første forskjell på Y er den avhengige variabelen. Siden den inneholder (bare) en ikke-sesongforskjell og en konstant periode, er den klassifisert som en quotARIMA (0,1,0) modell med constant. quot. Den tilfeldige tur-uten-drift modellen ville være en ARIMA (0,1, 0) modell uten konstant ARIMA (1,1,0) forskjellig førsteordens autoregressiv modell: Hvis feilene i en tilfeldig turmodell er autokorrelert, kan problemet løses ved å legge til et lag av den avhengige variabelen til prediksjonsligningen - - dvs ved å regresse den første forskjellen på Y i seg selv forsinket med en periode. Dette vil gi følgende prediksjonsligning: som kan omarrangeres til Dette er en førsteordens autoregressiv modell med en rekkefølge av ikke-soneforskjeller og en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) uten konstant enkel eksponensiell utjevning: En annen strategi for korrigering av autokorrelerte feil i en tilfeldig gangmodell er foreslått av den enkle eksponensielle utjevningsmodellen. Husk at for noen ikke-stationære tidsserier (for eksempel de som viser støyende svingninger rundt et sakte varierende gjennomsnitt), utfører ikke den tilfeldige turmodellen så vel som et glidende gjennomsnittsverdier av tidligere verdier. Med andre ord, i stedet for å ta den nyeste observasjonen som prognosen for neste observasjon, er det bedre å bruke et gjennomsnitt av de siste observasjonene for å filtrere ut støy og mer nøyaktig anslå det lokale gjennomsnittet. Den enkle eksponensielle utjevningsmodellen bruker et eksponentielt vektet glidende gjennomsnitt av tidligere verdier for å oppnå denne effekten. Forutsigelsesligningen for den enkle eksponensielle utjevningsmodellen kan skrives i en rekke matematisk ekvivalente former. hvorav den ene er den såkalte 8220error correction8221 skjemaet, der den forrige prognosen er justert i retning av feilen den gjorde: Fordi e t-1 Y t-1 - 374 t-1 per definisjon kan dette omskrives som : som er en ARIMA (0,1,1) - out-konstant prognosekvasjon med 952 1 1 - 945. Dette betyr at du kan passe en enkel eksponensiell utjevning ved å angi den som en ARIMA (0,1,1) modell uten konstant, og den estimerte MA (1) - koeffisienten tilsvarer 1-minus-alfa i SES-formelen. Husk at i SES-modellen er gjennomsnittsalderen for dataene i 1-periode fremover prognosene 1 945. Det betyr at de vil ha en tendens til å ligge bak trender eller vendepunkter med ca 1 945 perioder. Det følger at gjennomsnittlig alder av dataene i 1-periode fremover prognosene for en ARIMA (0,1,1) uten konstant modell er 1 (1 - 952 1). For eksempel, hvis 952 1 0,8 er gjennomsnittsalderen 5. Når 952 1 nærmer seg 1, blir ARIMA (0,1,1) uten konstant modell et veldig langsiktig glidende gjennomsnitt og som 952 1 nærmer seg 0 blir det en tilfeldig tur uten drivmodell. What8217s den beste måten å korrigere for autokorrelasjon: legge til AR-vilkår eller legge til MA-vilkår I de to foregående modellene ble problemet med autokorrelerte feil i en tilfeldig turmodell løst på to forskjellige måter: ved å legge til en forsinket verdi av differensierte serier til ligningen eller legge til en forsinket verdi av prognosen feil. Hvilken tilnærming er best En tommelfingerregel for denne situasjonen, som vil bli nærmere omtalt senere, er at positiv autokorrelasjon vanligvis behandles best ved å legge til et AR-uttrykk for modellen og negativ autokorrelasjon vanligvis behandles best ved å legge til en MA term. I forretnings - og økonomiske tidsserier oppstår negativ autokorrelasjon ofte som en artefakt av differensiering. (Generelt reduserer differensiering positiv autokorrelasjon og kan til og med føre til en bryter fra positiv til negativ autokorrelasjon.) Så, ARIMA (0,1,1) modellen, der differensiering er ledsaget av en MA-term, brukes hyppigere enn en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel eksponensiell utjevning med vekst: Ved å implementere SES-modellen som en ARIMA-modell, får du faktisk en viss fleksibilitet. Først og fremst er estimert MA (1) - koeffisient tillatt å være negativ. Dette tilsvarer en utjevningsfaktor som er større enn 1 i en SES-modell, som vanligvis ikke er tillatt i SES-modellprosedyren. For det andre har du muligheten til å inkludere en konstant periode i ARIMA-modellen hvis du ønsker det, for å estimere en gjennomsnittlig ikke-null trend. ARIMA-modellen (0,1,1) med konstant har prediksjonsligningen: Forventningene for en periode fremover fra denne modellen er kvalitativt lik SES-modellen, bortsett fra at bane av de langsiktige prognosene vanligvis er en skrånende linje (hvis skråning er lik mu) i stedet for en horisontal linje. ARIMA (0,2,1) eller (0,2,2) uten konstant lineær eksponensiell utjevning: Linjære eksponentielle utjevningsmodeller er ARIMA-modeller som bruker to ikke-soneforskjeller i sammenheng med MA-termer. Den andre forskjellen i en serie Y er ikke bare forskjellen mellom Y og seg selv forsinket av to perioder, men det er den første forskjellen i den første forskjellen - dvs. Y-endringen i Y i periode t. Således er den andre forskjellen på Y ved periode t lik (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En annen forskjell på en diskret funksjon er analog med et andre derivat av en kontinuerlig funksjon: det måler kvoteringsberegningsquot eller quotcurvaturequot i funksjonen på et gitt tidspunkt. ARIMA-modellen (0,2,2) uten konstant forutser at den andre forskjellen i serien er lik en lineær funksjon av de to siste prognosefeilene: som kan omarrangeres som: hvor 952 1 og 952 2 er MA (1) og MA (2) koeffisienter. Dette er en generell lineær eksponensiell utjevningsmodell. i hovedsak det samme som Holt8217s modell, og Brown8217s modell er et spesielt tilfelle. Den bruker eksponensielt vektede glidende gjennomsnitt for å anslå både et lokalt nivå og en lokal trend i serien. De langsiktige prognosene fra denne modellen konvergerer til en rett linje hvis skråning avhenger av den gjennomsnittlige trenden observert mot slutten av serien. ARIMA (1,1,2) uten konstant fuktet trend lineær eksponensiell utjevning. Denne modellen er illustrert i de tilhørende lysbildene på ARIMA-modellene. Den ekstrapolerer den lokale trenden i slutten av serien, men flater ut på lengre prognoshorisonter for å introdusere et konservatismedokument, en praksis som har empirisk støtte. Se artikkelen om hvorfor Damped Trend worksquot av Gardner og McKenzie og quotgolden Rulequot-artikkelen av Armstrong et al. for detaljer. Det er generelt tilrådelig å holde fast i modeller der minst en av p og q ikke er større enn 1, dvs. ikke prøv å passe på en modell som ARIMA (2,1,2), da dette sannsynligvis vil føre til overfitting og kvadrat-faktorquot problemer som er omtalt nærmere i notatene om den matematiske strukturen til ARIMA-modellene. Implementering av regneark: ARIMA-modeller som de som er beskrevet ovenfor, er enkle å implementere på et regneark. Forutsigelsesligningen er bare en lineær ligning som refererer til tidligere verdier av originale tidsserier og tidligere verdier av feilene. Dermed kan du sette opp et ARIMA prognose regneark ved å lagre dataene i kolonne A, prognoseformelen i kolonne B, og feilene (data minus prognoser) i kolonne C. Forutsigelsesformelen i en typisk celle i kolonne B ville ganske enkelt være et lineært uttrykk som refererer til verdier i forrige rader av kolonner A og C, multiplisert med de relevante AR - eller MA-koeffisientene lagret i celler andre steder på regnearket. Teknisk analyse: Flytende gjennomsnitt De fleste kartmønstre viser mye variasjon i prisbevegelsen. Dette kan gjøre det vanskelig for forhandlere å få en ide om en generell trend i sikkerheten. En enkel metode handelsmenn bruker for å bekjempe dette er å bruke bevegelige gjennomsnitt. Et glidende gjennomsnitt er gjennomsnittsprisen på en sikkerhet over en viss tid. Ved å tegne en sikkerhets gjennomsnittspris, blir prisbevegelsen utjevnet. Når de daglige fluktuasjonene er fjernet, er handelsmenn bedre i stand til å identifisere den sanne trenden og øke sannsynligheten for at det vil fungere i deres favør. (For å lære mer, les veiledning av Moving Averages.) Typer av bevegelige gjennomsnitt Det finnes en rekke ulike typer bevegelige gjennomsnitt som varierer i måten de beregnes på, men hvordan hvert gjennomsnitt tolkes forblir det samme. Beregningene varierer bare med hensyn til vekten som de legger på prisdata, som skifter fra likevekt av hvert prispunkt til mer vekt legges på nylige data. De tre vanligste typene av bevegelige gjennomsnitt er enkle. lineær og eksponentiell. Simple Moving Average (SMA) Dette er den vanligste metoden som brukes til å beregne det bevegelige gjennomsnittet av priser. Det tar bare summen av alle de siste sluttkursene over tidsperioden, og fordeler resultatet med antall priser som brukes i beregningen. For eksempel i et 10-dagers glidende gjennomsnitt blir de siste 10 sluttkursene lagt til sammen og deretter delt med 10. Som du kan se i figur 1, kan en forhandler gjøre gjennomsnittet mindre responsivt til å endre priser ved å øke tallet av perioder som brukes i beregningen. Å øke antall tidsperioder i beregningen er en av de beste måtene å måle styrken til den langsiktige trenden og sannsynligheten for at den vil reversere. Mange individer hevder at bruken av denne typen gjennomsnitt er begrenset fordi hvert punkt i dataserien har samme innvirkning på resultatet uavhengig av hvor det forekommer i sekvensen. Kritikerne hevder at de nyeste dataene er viktigere, og derfor bør den også ha høyere vekting. Denne typen kritikk har vært en av de viktigste faktorene som fører til oppfinnelsen av andre former for bevegelige gjennomsnitt. Lineærvektet gjennomsnittlig Denne glidende gjennomsnittlige indikatoren er minst vanlig ut av de tre og brukes til å løse problemet med likevekt. Det lineære vektede glidende gjennomsnittet beregnes ved å ta summen av alle sluttkursene over en bestemt tidsperiode og multiplisere dem med datapunktets posisjon og deretter dividere med summen av antall perioder. For eksempel, i et fem-dagers lineært vektet gjennomsnitt, blir dagens sluttkurs multiplisert med fem, gårdager med fire og så videre til den første dagen i perioden er nået. Disse tallene legges deretter sammen og deles av summen av multiplikatorene. Eksponentiell flytende gjennomsnitt (EMA) Denne flytende gjennomsnittlige beregningen bruker en utjevningsfaktor for å legge høyere vekt på de siste datapunktene, og betraktes som mye mer effektivt enn det lineære vektede gjennomsnittet. Å ha en forståelse av beregningen er vanligvis ikke nødvendig for de fleste handelsfolk fordi de fleste kartleggingspakker gjør beregningen for deg. Det viktigste å huske om det eksponentielle glidende gjennomsnittet er at det er mer responsivt på ny informasjon i forhold til det enkle glidende gjennomsnittet. Denne responsen er en av de viktigste faktorene til hvorfor dette er det bevegelige gjennomsnittet mellom mange tekniske handelsfolk. Som du ser i figur 2, øker en 15-årig EMA og faller raskere enn en 15-årig SMA. Denne lille forskjellen virker ikke så mye, men det er en viktig faktor å være klar over siden det kan påvirke avkastningen. Større bruksområder for bevegelige gjennomsnitt Gjennomsnittlig flytteverdi brukes til å identifisere gjeldende trender og trendoverganger, samt å sette opp støtte - og motstandsnivåer. Flytende gjennomsnitt kan brukes til å raskt identifisere om en sikkerhet beveger seg i en opptrinn eller en nedtrengning avhengig av retningen av det bevegelige gjennomsnittet. Som du ser i figur 3, når et bevegelige gjennomsnittspunkt går oppover og prisen er over det, er sikkerheten i en opptrinn. Omvendt kan et nedovergående glidende gjennomsnittspris med prisen nedenfor benyttes til å signalere en downtrend. En annen metode for å bestemme momentum er å se på rekkefølgen til et par bevegelige gjennomsnitt. Når et kortsiktig gjennomsnitt er over et langsiktig gjennomsnitt, er trenden oppe. På den annen side signalerer et langsiktig gjennomsnitt over et kortere sikt gjennomsnitt en nedadgående bevegelse i trenden. Flytte gjennomsnittlige trendrendringer er dannet på to hovedveier: når prisen beveger seg gjennom et bevegelig gjennomsnitt og når det beveger seg gjennom bevegelige gjennomsnittsoverskridelser. Det første vanlige signalet er når prisen beveger seg gjennom et viktig bevegelige gjennomsnitt. For eksempel, når prisen på en sikkerhet som var i en opptrinn, faller under et 50-års glidende gjennomsnitt, som i figur 4, er det et tegn på at opptrenden kan vende seg. Det andre signalet om en trend reversering er når et bevegelige gjennomsnitt krysser gjennom en annen. For eksempel, som 15-dagers glidende gjennomsnitt krysser over det 50-dagers glidende gjennomsnittet, er det et positivt tegn på at prisen vil begynne å øke. Hvis periodene som brukes i beregningen er relativt korte, for eksempel 15 og 35, kan dette signalere en kortsiktig trendomkastning. På den annen side, når to gjennomsnitt med relativt lange tidsrammer krysse over (f. eks. 50 og 200), brukes dette til å foreslå en langsiktig endring i trenden. En annen viktig måte å bevege gjennomsnitt på er å identifisere støtte - og motstandsnivåer. Det er ikke uvanlig å se en lager som har fallet, stoppe nedgangen og bakoverretningen når den treffer støtten til et stort bevegelige gjennomsnitt. En bevegelighet gjennom et stort bevegelige gjennomsnitt blir ofte brukt som et signal fra tekniske handelsfolk om at trenden er omvendt. For eksempel, hvis prisen går gjennom 200-dagers glidende gjennomsnitt i en nedadgående retning, er det et signal om at opptrenden reverserer. Flytte gjennomsnitt er et kraftig verktøy for å analysere trenden i sikkerhet. De gir nyttige støtte - og motstandspunkter og er veldig enkle å bruke. De vanligste tidsrammer som brukes når du lager glidende gjennomsnitt er 200-dagers, 100-dagers, 50-dagers, 20-dagers og 10-dagers. 200-dagers gjennomsnittet antas å være et godt mål for et handelsår, et 100-dagers gjennomsnitt på et halvt år, et 50-dagers gjennomsnitt på kvart i året, et 20-dagers gjennomsnitt på en måned og 10 - dags gjennomsnitt på to uker. Flytte gjennomsnittsverdier hjelper tekniske handelsfolk til å glatte ut noe av støyen som finnes i daglige prisbevegelser, noe som gir handelsmenn et tydeligere bilde av prisutviklingen. Så langt har vi vært fokusert på prisbevegelse, gjennom diagrammer og gjennomsnitt. I neste avsnitt, se på noen andre teknikker som brukes til å bekrefte prisbevegelser og mønstre. Teknisk analyse: Indikatorer og oscillatorer
No comments:
Post a Comment